สารบัญ:
2025 ผู้เขียน: John Day | [email protected]. แก้ไขล่าสุด: 2025-01-23 15:12
HMC5883 เป็นเข็มทิศดิจิตอลที่ออกแบบมาสำหรับการตรวจจับสนามแม่เหล็กระดับต่ำ อุปกรณ์นี้มีช่วงสนามแม่เหล็กกว้าง +/-8 Oe และอัตราเอาต์พุต 160 Hz เซ็นเซอร์ HMC5883 ประกอบด้วยตัวขับสายรัดแบบลดสนามแม่เหล็กอัตโนมัติ การยกเลิกออฟเซ็ต และ ADC 12 บิตที่ช่วยให้ทิศทางของเข็มทิศแม่นยำตั้งแต่ 1° ถึง 2° I²C Mini Modules ทั้งหมดได้รับการออกแบบให้ทำงานที่ 5VDC
ในบทช่วยสอนนี้ เราจะอธิบายการทำงานโดยละเอียดของ HMC5883 ด้วยอนุภาคโฟตอน อนุภาคโฟตอนเป็นบอร์ดที่อำนวยความสะดวกในการส่งและรับข้อมูลจากเว็บไซต์ ซึ่งสนับสนุนคุณสมบัติพื้นฐานที่สุดของ Internet Of Things (IoT)
ขั้นตอนที่ 1: ฮาร์ดแวร์ที่จำเป็น:
วัสดุที่เราต้องการเพื่อให้บรรลุเป้าหมายประกอบด้วยส่วนประกอบฮาร์ดแวร์ต่อไปนี้:
1. HMC5883
2. อนุภาคโฟตอน
3. สายเคเบิล I2C
4. I2C Shield สำหรับอนุภาคโฟตอน
ขั้นตอนที่ 2: การเชื่อมต่อฮาร์ดแวร์:
ส่วนการเชื่อมต่อฮาร์ดแวร์โดยทั่วไปจะอธิบายการเชื่อมต่อสายไฟที่จำเป็นระหว่างเซ็นเซอร์และโฟตอนของอนุภาค ตรวจสอบให้แน่ใจว่าการเชื่อมต่อถูกต้องเป็นสิ่งจำเป็นพื้นฐานในขณะที่ทำงานกับระบบใด ๆ สำหรับเอาต์พุตที่ต้องการ ดังนั้น การเชื่อมต่อที่จำเป็นมีดังนี้:
HMC5883 จะทำงานบน I2C นี่คือตัวอย่างไดอะแกรมการเดินสาย ซึ่งสาธิตวิธีเชื่อมต่อแต่ละอินเทอร์เฟซของเซ็นเซอร์
นอกกรอบ บอร์ดได้รับการกำหนดค่าสำหรับอินเทอร์เฟซ I2C ดังนั้นเราขอแนะนำให้ใช้การเชื่อมต่อนี้หากคุณไม่เชื่อเรื่องพระเจ้า สิ่งที่คุณต้องมีคือสี่สาย!
ต้องใช้พิน Vcc, Gnd, SCL และ SDA เพียงสี่การเชื่อมต่อเท่านั้น และเชื่อมต่อด้วยสายเคเบิล I2C
การเชื่อมต่อเหล่านี้แสดงให้เห็นในภาพด้านบน
ขั้นตอนที่ 3: รหัสเพื่อวัดความเข้มของสนามแม่เหล็ก:
เริ่มต้นด้วยรหัสอนุภาคตอนนี้
ในขณะที่ใช้โมดูลเซ็นเซอร์กับ Arduino เราได้รวมไลบรารี application.h และ spark_wiring_i2c.h "application.h" และไลบรารี spark_wiring_i2c.h มีฟังก์ชันที่อำนวยความสะดวกในการสื่อสาร i2c ระหว่างเซ็นเซอร์และอนุภาค
รหัสอนุภาคทั้งหมดได้รับด้านล่างเพื่อความสะดวกของผู้ใช้:
#รวม
#รวม
// ที่อยู่ HMC5883 I2C คือ 0x1E(30)
#define แอดเดอร์ 0x1E
int xMag = 0, yMag = 0, zMag = 0;
การตั้งค่าเป็นโมฆะ ()
{
// ตั้งค่าตัวแปร
Particle.variable("i2cdevice", "HMC5883");
Particle.variable("xMag", xMag);
Particle.variable("yMag", yMag);
Particle.variable("zMag", zMag);
// เริ่มต้นการสื่อสาร I2C เป็น MASTER
Wire.begin();
// เริ่มต้นการสื่อสารแบบอนุกรม ตั้งค่าอัตรารับส่งข้อมูล = 9600
Serial.begin(9600);
// เริ่มการส่ง I2C
Wire.beginTransmission(Addr);
// เลือกกำหนดค่าการลงทะเบียน A
Wire.write(0x00);
// ตั้งค่าการวัดปกติ อัตราการส่งข้อมูล = 0.75Hz
Wire.write(0x60);
// หยุดการส่ง I2C
Wire.endTransmission();
// เริ่มการส่ง I2C
Wire.beginTransmission(Addr);
// เลือกโหมดลงทะเบียน
Wire.write(0x02);
// ตั้งค่าการวัดต่อเนื่อง
Wire.write(0x00);
// หยุดการส่ง I2C
Wire.endTransmission();
ล่าช้า (300);
}
วงเป็นโมฆะ ()
{
ข้อมูล int ที่ไม่ได้ลงนาม[6];
// เริ่มการส่ง I2C
Wire.beginTransmission(Addr);
// เลือก data register
Wire.write(0x03);
// หยุดการส่ง I2C
Wire.endTransmission();
// ขอข้อมูล 6 ไบต์
Wire.requestFrom(Addr, 6);
// อ่านข้อมูลขนาด 6 ไบต์
// xMag msb, xMag lsb, zMag msb, zMag lsb, yMag msb, yMag lsb
if(Wire.available() == 6)
{
data[0] = Wire.read();
ข้อมูล[1] = Wire.read();
ข้อมูล [2] = Wire.read();
ข้อมูล[3] = Wire.read();
ข้อมูล[4] = Wire.read();
ข้อมูล[5] = Wire.read();
}
ล่าช้า (300);
// แปลงข้อมูล
xMag = ((ข้อมูล[0] * 256) + ข้อมูล[1]);
ถ้า(xMag > 32767)
{
xMag -= 65536;
}
zMag = ((ข้อมูล[2] * 256) + ข้อมูล[3]);
ถ้า(zMag > 32767)
{
zMag -= 65536;
}
yMag = ((ข้อมูล[4] * 256) + ข้อมูล[5]);
ถ้า(yMag > 32767)
{
yMag -= 65536;
}
// ส่งออกข้อมูลไปยังแดชบอร์ด
Particle.publish("สนามแม่เหล็กในแกน X: ", สตริง (xMag));
ล่าช้า (1000);
Particle.publish("สนามแม่เหล็กในแกน Y: ", สตริง (yMag));
ล่าช้า (1000);
Particle.publish("สนามแม่เหล็กในแกน Z: ", สตริง (zMag));
ล่าช้า (1000);
}
ฟังก์ชัน Particle.variable() สร้างตัวแปรเพื่อเก็บเอาต์พุตของเซ็นเซอร์ และฟังก์ชัน Particle.publish() จะแสดงเอาต์พุตบนแดชบอร์ดของไซต์
เอาต์พุตเซ็นเซอร์แสดงในภาพด้านบนสำหรับการอ้างอิงของคุณ
ขั้นตอนที่ 4: การใช้งาน:
HMC5883 เป็นโมดูลมัลติชิปแบบยึดบนพื้นผิวที่ออกแบบมาสำหรับการตรวจจับสนามแม่เหล็กต่ำพร้อมอินเทอร์เฟซดิจิทัลสำหรับการใช้งาน เช่น เข็มทิศและการวัดความเข้มข้นของสนามแม่เหล็กที่มีต้นทุนต่ำ ความแม่นยำและความแม่นยำในระดับสูงหนึ่งถึงสององศาทำให้สามารถนำทางคนเดินถนนและแอปพลิเคชัน LBS ได้
แนะนำ:
การติดตามการเคลื่อนไหวโดยใช้ MPU-6000 และอนุภาคโฟตอน: 4 ขั้นตอน
การติดตามการเคลื่อนไหวโดยใช้ MPU-6000 และอนุภาคโฟตอน: MPU-6000 เป็นเซ็นเซอร์ติดตามการเคลื่อนไหวแบบ 6 แกนซึ่งมีมาตรความเร่งแบบ 3 แกนและไจโรสโคปแบบ 3 แกนฝังอยู่ในนั้น เซ็นเซอร์นี้สามารถติดตามตำแหน่งที่แน่นอนและตำแหน่งของวัตถุในระนาบ 3 มิติได้อย่างมีประสิทธิภาพ สามารถใช้ได้ครับผม
การวัดความเร่งโดยใช้ ADXL345 และอนุภาคโฟตอน: 4 ขั้นตอน
การวัดความเร่งโดยใช้ ADXL345 และอนุภาคโฟตอน: ADXL345 เป็นมาตรความเร่งแบบ 3 แกนที่มีกำลังไฟต่ำและบางเป็นพิเศษซึ่งใช้พลังงานต่ำมากและมีความละเอียดสูง (13 บิต) ที่การวัดสูงสุด ±16 กรัม ข้อมูลเอาท์พุตดิจิตอลมีรูปแบบเป็นส่วนประกอบสองส่วน 16 บิต และสามารถเข้าถึงได้ผ่านอินเทอร์เฟซดิจิตอล I2 C มันวัดการ
การวัดสนามแม่เหล็กโดยใช้ HMC5883 และ Raspberry Pi: 4 ขั้นตอน
การวัดสนามแม่เหล็กโดยใช้ HMC5883 และ Raspberry Pi: HMC5883 เป็นเข็มทิศดิจิตอลที่ออกแบบมาสำหรับการตรวจจับสนามแม่เหล็กระดับต่ำ อุปกรณ์นี้มีช่วงสนามแม่เหล็กกว้าง +/-8 Oe และอัตราเอาต์พุต 160 Hz เซ็นเซอร์ HMC5883 ประกอบด้วยตัวขับสายรัดแบบลดแรงดันอัตโนมัติ การยกเลิกออฟเซ็ต และ
การวัดสนามแม่เหล็กโดยใช้ HMC5883 และ Arduino Nano: 4 ขั้นตอน
การวัดสนามแม่เหล็กโดยใช้ HMC5883 และ Arduino Nano: HMC5883 เป็นเข็มทิศดิจิตอลที่ออกแบบมาสำหรับการตรวจจับสนามแม่เหล็กระดับต่ำ อุปกรณ์นี้มีช่วงสนามแม่เหล็กกว้าง +/-8 Oe และอัตราเอาต์พุต 160 Hz เซ็นเซอร์ HMC5883 ประกอบด้วยตัวขับสายรัดแบบลดแรงดันอัตโนมัติ การยกเลิกออฟเซ็ต และ
การวัดความชื้นโดยใช้ HYT939 และอนุภาคโฟตอน: 4 ขั้นตอน
การวัดความชื้นโดยใช้ HYT939 และอนุภาคโฟตอน: HYT939 เป็นเซ็นเซอร์ความชื้นแบบดิจิตอลที่ทำงานบนโปรโตคอลการสื่อสาร I2C ความชื้นเป็นตัวแปรสำคัญเมื่อพูดถึงระบบทางการแพทย์และห้องปฏิบัติการ ดังนั้นเพื่อให้บรรลุเป้าหมายเหล่านี้ เราจึงพยายามเชื่อมต่อ HYT939 กับราสเบอร์รี่ pi ผม