สารบัญ:
- ขั้นตอนที่ 1: ฮาร์ดแวร์ที่จำเป็น:
- ขั้นตอนที่ 2: การเชื่อมต่อฮาร์ดแวร์:
- ขั้นตอนที่ 3: รหัสสำหรับการวัดอุณหภูมิ:
- ขั้นตอนที่ 4: การใช้งาน:
วีดีโอ: การตรวจสอบอุณหภูมิโดยใช้ MCP9808 และ Arduino Nano: 4 ขั้นตอน
2024 ผู้เขียน: John Day | [email protected]. แก้ไขล่าสุด: 2024-01-30 13:04
MCP9808 เป็นเซ็นเซอร์อุณหภูมิแบบดิจิตอลที่มีความแม่นยำสูง ±0.5°C I2C mini module สิ่งเหล่านี้รวมเข้ากับการลงทะเบียนที่ผู้ใช้ตั้งโปรแกรมได้ซึ่งอำนวยความสะดวกในการใช้งานการตรวจวัดอุณหภูมิ เซ็นเซอร์อุณหภูมิความแม่นยำสูง MCP9808 ได้กลายเป็นมาตรฐานอุตสาหกรรมในแง่ของฟอร์มแฟคเตอร์และความชาญฉลาด โดยให้สัญญาณเซ็นเซอร์เชิงเส้นที่ปรับเทียบแล้วในรูปแบบ I2C ดิจิทัล
ในบทช่วยสอนนี้ ได้มีการสาธิตการเชื่อมต่อโมดูลเซ็นเซอร์ MCP9808 กับ Arduino nano ในการอ่านค่าอุณหภูมิ เราได้ใช้ raspberry pi กับอะแดปเตอร์ I2c อะแดปเตอร์ I2C นี้ทำให้การเชื่อมต่อกับโมดูลเซ็นเซอร์ทำได้ง่ายและเชื่อถือได้มากขึ้น
ขั้นตอนที่ 1: ฮาร์ดแวร์ที่จำเป็น:
วัสดุที่เราต้องการเพื่อให้บรรลุเป้าหมายประกอบด้วยส่วนประกอบฮาร์ดแวร์ต่อไปนี้:
1. MCP9808
2. Arduino นาโน
3. สายเคเบิล I2C
4. I2C Shield สำหรับ Arduino nano
ขั้นตอนที่ 2: การเชื่อมต่อฮาร์ดแวร์:
ส่วนการเชื่อมต่อฮาร์ดแวร์โดยทั่วไปจะอธิบายการเชื่อมต่อสายไฟที่จำเป็นระหว่างเซ็นเซอร์และ Arduino nano ตรวจสอบให้แน่ใจว่าการเชื่อมต่อถูกต้องเป็นสิ่งจำเป็นพื้นฐานในขณะที่ทำงานกับระบบใด ๆ สำหรับเอาต์พุตที่ต้องการ ดังนั้น การเชื่อมต่อที่จำเป็นมีดังนี้:
MCP9808 จะทำงานบน I2C นี่คือตัวอย่างไดอะแกรมการเดินสาย ซึ่งสาธิตวิธีเชื่อมต่อแต่ละอินเทอร์เฟซของเซ็นเซอร์
นอกกรอบ บอร์ดได้รับการกำหนดค่าสำหรับอินเทอร์เฟซ I2C ดังนั้นเราขอแนะนำให้ใช้การเชื่อมต่อนี้หากคุณไม่เชื่อเรื่องพระเจ้า สิ่งที่คุณต้องมีคือสี่สาย!
ต้องใช้พิน Vcc, Gnd, SCL และ SDA เพียงสี่การเชื่อมต่อเท่านั้น และเชื่อมต่อด้วยสายเคเบิล I2C
การเชื่อมต่อเหล่านี้แสดงให้เห็นในภาพด้านบน
ขั้นตอนที่ 3: รหัสสำหรับการวัดอุณหภูมิ:
เริ่มจากโค้ด Arduino กันก่อนเลย
ในขณะที่ใช้โมดูลเซ็นเซอร์กับ Arduino เราได้รวมไลบรารี Wire.h ไลบรารี "Wire" มีฟังก์ชันที่อำนวยความสะดวกในการสื่อสาร i2c ระหว่างเซนเซอร์และบอร์ด Arduino
รหัส Arduino ทั้งหมดได้รับด้านล่างเพื่อความสะดวกของผู้ใช้:
#รวม
// ที่อยู่ MCP9808 I2C คือ 0x18(24)
#define แอดเดอร์ 0x18
การตั้งค่าเป็นโมฆะ ()
{
// เริ่มต้นการสื่อสาร I2C เป็น MASTER
Wire.begin();
// เริ่มต้นการสื่อสารแบบอนุกรม ตั้งค่าอัตรารับส่งข้อมูล = 9600
Serial.begin(9600);
// เริ่มการส่ง I2C
Wire.beginTransmission(Addr);
// เลือกการตั้งค่าการลงทะเบียน
Wire.write(0x01);
// โหมดการแปลงต่อเนื่อง, ค่าเริ่มต้นของการเพิ่มพลัง
Wire.write(0x00);
Wire.write(0x00);
// หยุดการส่ง I2C
Wire.endTransmission();
// เริ่มการส่ง I2C
Wire.beginTransmission(Addr);
// เลือกความละเอียดการลงทะเบียน
Wire.write(0x08);
// ความละเอียด = +0.0625 / C
Wire.write(0x03);
// หยุดการส่ง I2C
Wire.endTransmission();
}
วงเป็นโมฆะ ()
{
ข้อมูล int ที่ไม่ได้ลงนาม[2];
// เริ่มการสื่อสาร I2C
Wire.beginTransmission(Addr);
// เลือก data register
Wire.write(0x05);
// หยุดการส่ง I2C
Wire.endTransmission();
// ขอข้อมูล 2 ไบต์
Wire.requestFrom(Addr, 2);
// อ่านข้อมูลขนาด 2 ไบต์
// ชั่วคราว MSB, อุณหภูมิ LSB
ถ้า(Wire.available() == 2)
{
data[0] = Wire.read();
ข้อมูล[1] = Wire.read();
}
// แปลงข้อมูลเป็น 13 บิต
int temp = ((data[0] & 0x1F) * 256 + data[1]);
ถ้า (อุณหภูมิ > 4095)
{
อุณหภูมิ -= 8192;
}
float cTemp = อุณหภูมิ * 0.0625;
float fTemp = cTemp * 1.8 + 32;
// ส่งออกข้อมูลไปที่หน้าจอ
Serial.print("อุณหภูมิในเซลเซียส: ");
Serial.println (cTemp);
Serial.println("C");
Serial.print("อุณหภูมิเป็นฟาเรนไฮต์: ");
Serial.println (fTemp);
Serial.println("F");
ล่าช้า (500);
}
ในไลบรารีของสายไฟ Wire.write() และ Wire.read() ใช้เพื่อเขียนคำสั่งและอ่านเอาต์พุตของเซ็นเซอร์
Serial.print() และ Serial.println() ใช้เพื่อแสดงเอาต์พุตของเซ็นเซอร์บนจอภาพอนุกรมของ Arduino IDE
เอาต์พุตของเซ็นเซอร์แสดงในภาพด้านบน
ขั้นตอนที่ 4: การใช้งาน:
MCP9808 Digital Temperature Sensor มีการใช้งานระดับอุตสาหกรรมหลายแบบ ซึ่งรวมตู้แช่แข็งและตู้เย็นสำหรับอุตสาหกรรมพร้อมกับเครื่องเตรียมอาหารต่างๆ เซ็นเซอร์นี้สามารถใช้ได้กับคอมพิวเตอร์ส่วนบุคคล เซิร์ฟเวอร์ และอุปกรณ์ต่อพ่วงพีซีอื่นๆ
แนะนำ:
การตรวจสอบอุณหภูมิโดยใช้ MCP9808 และ Raspberry Pi: 4 ขั้นตอน
การตรวจสอบอุณหภูมิโดยใช้ MCP9808 และ Raspberry Pi: MCP9808 เป็นเซ็นเซอร์อุณหภูมิดิจิตอลขนาดเล็กที่มีความแม่นยำสูง ±0.5°C I2C สิ่งเหล่านี้รวมเข้ากับการลงทะเบียนที่ผู้ใช้ตั้งโปรแกรมได้ซึ่งอำนวยความสะดวกในการใช้งานการตรวจวัดอุณหภูมิ เซ็นเซอร์อุณหภูมิความแม่นยำสูง MCP9808 ได้กลายเป็นอุตสาหกรรม
ติดตาม: ศูนย์สื่อขั้นสูงพร้อม Odroid N2 และ Kodi (รองรับ 4k และ HEVC): 3 ขั้นตอน
ติดตาม: Advanced Media Center พร้อม Odroid N2 และ Kodi (รองรับ 4k และ HEVC): บทความนี้เป็นบทความต่อจากบทความก่อนหน้าของฉันที่ประสบความสำเร็จค่อนข้างมากเกี่ยวกับการสร้างศูนย์สื่ออเนกประสงค์ โดยอ้างอิงจาก Raspberry PI ที่ได้รับความนิยมมากในตอนแรก แต่ ในภายหลัง เนื่องจากไม่มีเอาต์พุตที่สอดคล้องกับ HEVC, H.265 และ HDMI 2.2 จึงมีสวิตช์
Blinds Control ด้วย ESP8266, Google Home และ Openhab Integration และ Webcontrol: 5 ขั้นตอน (พร้อมรูปภาพ)
การควบคุมมู่ลี่ด้วย ESP8266, Google Home และ Openhab Integration และ Webcontrol: ในคำแนะนำนี้ ฉันจะแสดงให้คุณเห็นว่าฉันเพิ่มระบบอัตโนมัติให้กับมู่ลี่ของฉันอย่างไร ฉันต้องการเพิ่มและลบระบบอัตโนมัติได้ ดังนั้นการติดตั้งทั้งหมดจึงเป็นแบบหนีบ ส่วนหลักคือ: สเต็ปเปอร์มอเตอร์ ตัวขับสเต็ปควบคุม bij ESP-01 เกียร์และการติดตั้ง
DIY IBeacon และ Beacon Scanner ด้วย Raspberry Pi และ HM13: 3 ขั้นตอน
DIY IBeacon และ Beacon Scanner ด้วย Raspberry Pi และ HM13: Story A beacon จะส่งสัญญาณอย่างต่อเนื่องเพื่อให้อุปกรณ์บลูทู ธ อื่น ๆ รู้ว่ามีอยู่ และฉันอยากได้บีคอนบลูทูธเพื่อติดตามกุญแจมาตลอด เพราะฉันลืมเอามันมาเหมือน 10 ครั้งในปีที่แล้ว และฉันก็เกิดขึ้น
การตรวจสอบอุณหภูมิโดยใช้ MCP9808 และอนุภาคโฟตอน: 4 ขั้นตอน
การตรวจสอบอุณหภูมิโดยใช้ MCP9808 และอนุภาคโฟตอน: MCP9808 เป็นเซ็นเซอร์อุณหภูมิดิจิตอลขนาดเล็กที่มีความแม่นยำสูง ±0.5°C I2C สิ่งเหล่านี้รวมเข้ากับการลงทะเบียนที่ผู้ใช้ตั้งโปรแกรมได้ซึ่งอำนวยความสะดวกในการใช้งานการตรวจวัดอุณหภูมิ เซ็นเซอร์อุณหภูมิความแม่นยำสูง MCP9808 ได้กลายเป็นอุตสาหกรรม